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ABSTRACT 

Two laboratory-scale runs have recently been completed to test the fea­

sibility of a single-step incineration/vitrification process for Three Mile 

Island EPICOR II resins. The process utilizes vitrification equipment, spe­

cifically a 15-cm-dia in-can melter, and a specially designed feed technique. 

Two process tests, each conducted with 1.2 kg of EPICOR II resins loaded with 

nonradioactive cesium and strontium, showed excellent operational characteris­

tics. Less than 0.8 wt% of the resins were entrained with the gaseous efflu­

ents in the second test. Cesium and strontium losses were controlled to 

0.71 wt% and less. In addition, all the carbonaceous resins were converted 

completely to co2 with no detectable CO. Future activities are being directed 

to longer-term tests in laboratory-scale equipment to determine attainable 

volume reduction, process rates, and material conformance to processing con­

ditions. 
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INTRODUCTION 

Funded by the U. S. Department of Energy under the EG&G/TMI Waste 

Immobilization Program, Pacific Northwest Laboratory (PN L) has completed the 

first phase of a program in which a process designed to destroy EPICOR II® 

resins was tested for its feasibility. These resins were utilized to remove 

cesium and strontium from radioactively contaminated water in the Auxiliary 

Building at the Three Mile Island Unit 2 Reactor after the incident in March 

1979. They are also being used as a polishing system for water processed 

through the submerged demineralized systems. 

Two types of EPICOR II resins have been utilized at Three Mile Island: 

• a mixture of anionic and cationic organic resins; 

• a mixture of the organic resins and inorganic zeolite resins. 

Only the organic resins were utilized for process testing in this study. 

In a single step, the PN L process greatly reduces the volume of these 

resins by incinerating them and incorporating cesium, strontium and residual 

ash particles into glass. The objective of the first phase of the program was 

to deve1op and test the concept on a laboratory scale using resins loaded with 

simulated radionuclides. During the test, a stable glass product was produced 

in a canister 38 em tall x 15 em in dia. This report describes the process 

development and nonradioactive test results. The report concludes that 

EPICOR II resins can be destroyed in a single step with minimal waste bypro­

ducts. 

®Registered trademark of EPICOR, Inc., Unden, New Jersey. 
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PROCESS DEVELOPMENT 

Researchers at PNL have gained considerable expertise in vitrification 

from past experience in high-level waste programs (Bonner 1979). This experi­

ence, combined with that of other PNL researchers familiar with organic resins 

and incineration, helped develop a concept for the introduction of combustible 

EPICOR II resins into vitrification equipment. The selected technique was 

designed to expose the resins to combustion temperatures of over 600°C in con­

tact with oxygen to allow complete combustion and with glass to absorb the 

radioactive elements of Cs and Sr. Residence time had to be adequate to allow 

combustion to be completed and to avoid entrainment of carbonaceous materials 

with the gaseous effluents. 

Two different processes have been developed at PNL for waste vitrifica­

tion. In the first, a joule-heated ceramic melter heats molten glass con­

tained inside a refractory shell through dissipation of electric current in 

the melt. The resulting glass product continuously flows into a steel canis­

ter. In the second process, in-can melting, molten glass is heated directly 

in a stainless steel canister by external resistance heaters. Although the 

EPICOR II vitrification process is applicable to both the joule-heated ceramic 

and in-can melters, the first phase of this program concentrated only on the 

latter since the in-can melter test system is readily available for radio­

active testing. 

The four feed introduction techniques depicted in Figure 1 were evaluated 

during process development. Of these techniques, only below-surface entry 

(Number 4) assures contact of resins with glass to fix Cs and Sr in the glass 

product. The below-surface entry technique is similar to that employed in the 

molten-salt incinerator concepts (Rockwell 1980),  except that molten glass is 

used instead of salt. The molten glass is also kept at higher temperatures 

(1050°C) to keep the glass fluid (less than 200 poise). These temperatures 

are well above the 600°C combustion temperature requirement for complete com­

bustion. Figure 2 is a plot of the combustion behavior of EPICOR II resins in 

air obtained by differential scanning calorimetry analysis. The final por­

tions of the exothermic curves, which are above the temperature limits of the 
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FIGURE 2. Differential Scanning Calorimetry Analysis of EPICOR II Resins 

equipment used, are extrapolated, but other organic resins burn with similar 

exothermic behavior (Schultz 1972); therefore, we are confident that exother­

mic combustion reactions are complete at 600°C. 

The process used for feasibility testing is depicted in Figure 3. Oxygen 

and resins loaded with nonradioactive Cs and Sr are fed through a sealed drop 

tube that penetrates the glass surface. The molten glass absorbs the Cs and 

Sr as the resins are destroyed. The drop tube is sized at 3.8-cm dia to keep 

vertical velocities between the drop tube and canister wall below 10 cm/s. 

This reduces the entrainment of particulates in the offgas and increases the 

residence time of combustibles at ignition temperatures. Most of the particu­

late carbonaceous material is fixed in glass until the oxygen completes com­

bustion. Therefore, in the presence of 02 the only materials retained in the 

- glass product are Cs, Sr and noncombustible impurities or ash. 
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PROCESS TESTING 

Two experimental runs were performed with EPICOR II resins loaded with 

nonradioactive Cs and Sr. The resins were fed through the drop tube into mol­

ten glass contained in a canister 38 em tall x 15 em dia. The canister was 

constructed of Inconel 690®, a nickel-chromium alloy. The gaseous effluents 

were continuously sampled, filtered, and sampled again before being scrubbed 

and exhausted to the stack. The sample streams were analyzed to identify the 

combustion products and Cs and Sr volatility behavior. The results were most 

encouraging and indicated that the carbonaceous material was completely con­

verted to co2 with no detectable CO. Also, 99.3 to 99.8% of the Cs was 

retained in the glass along with 99.5 to 99.98% of the Sr. 

RESIN LOADING 

In order to determine the significance of the volatility data for Cs and 

Sr, understanding the basis for the degree of loading onto the EPICOR II 

resins is important. The loadings used in these tests were based on analyti­

cal detection limits of Cs and Sr in the glass. The loading of 0.012 g/g 

resin was chosen for both Cs and Sr because the final expected concentrations 

of these elements in the glass following the tests would be ten times the 

detection limit of 0.02 wt%. These loadings, which are many orders of magni­

tude higher than the expected loadings at Three Mile Island, will most prob­

ably give higher volatility numbers than would actually be expected for the 

EPICOR II resins at TMI. 

PROCESS OPERATION 

The loaded resins were metered through a clamped, vibrating polyethylene 

line. In both runs, 2400 g of resins were incinerated and vitrified in 9.8 kg 

of glass over a 4-hour period. Even though the feed-control method was crude, 

a steady vacuum of 25 em H20 was maintained in the canister throughout the 

® Registered trademark of the Huntington Alloys Division of the International 
Nickel Company, Inc., Huntington, West Virginia. 
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operation. The glass was maintained between 950°C and 1050°C via automatic 

temperature control of the external heaters. The glass level was raised from 

3.2 em above the drop tube in Run 1-A to 10 em in the second run (Run 1-B) to 

determine the effects of submergence on effluent behavior. No volume reduc­

tion data are reported because longer-term tests are needed to determine the 

maximum loading of the glass. The Cs and Sr concentrations in the glass at 

the completion of these runs were 0.24% and 0.35%, respectively. The glass 

used, whose composition is listed in Table 1, was a standard, off-the-shelf 

glass frit and was not designed to optimize product quality. However, the 

glass does fulfill the objective of determining process feasibility. 

PARTICULATE ENTRAINMENT 

The gaseous effluents passed through a HEPA filter, which was weighed to 

quantify the particulate entrainment. In the first run, 2.2% of the resins 

had collected on the filter in carbonaceous form. However, by raising the 

glass level, entrainment was reduced to <0.8%. The filter was· also effective 

in removing all the detectable Cs and Sr in the off gas. Later phases of this 

program will demonstrate the concept of recycling the filter deposits back to 

the melter. 

TABLE 1. Composition of Glass Used in Process Operation 

Concentration by Concentration by 
Component Specification, wt% Analysis, wt% 

Si02 56.3 5 6.3 

CaO 7.09 7.04 

Na2o 14.76 14.0 

B203 21.53 21.5 

SrO 0 0.02 

cs2o 0 <0.02 

Impurities 0 1.24 

8 



RADIONUCLIDE BEHAVIOR 

The most encouraging result has been the low concentration of Cs and Sr 

in the effluent stream. An offgas sampling system shown in Figure 4 condenses 

and scrubs the samples both before and after filtration. The second system is 

used to determine the efficiency of the filter in removing the radionuclides. 

After each run, the sample lines were flushed and all the solutions were 

analyzed. Although this is an accurate analytical procedure, the filter 
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FIGURE 4. Offgas Treatment and Sampling System 

9 



particulates and glass product were also analyzed to serve as checks. Results 

are tabulated in Table 2. 

The results in the first column indicate that radionuclide retention 

improved in the second run, which is attributable to the greater submergence 

of the drop tube. Interestingly, in Run I-A, where 2.2% of the resins were 

collected as carbonaceous particulates, only 0.24% of the Sr had been 

entrained into the offgas. Strontium is normally nonvolatile at the process 

temperature of 1050°C; thus, Sr effluent losses usually are proportional to 

particulate losses. However, the low entrainment of Sr in these tests indi­

cates that Sr attains more affinity for the glass than partially combusted 

resins. Cesium, which is the more volatile component, also appears to behave 

independently of particulate losses. 

COMBUSTION EFFICIENCY 

The best indication of the degree of combustion is the CO/C02 ratio and 

amount of pyrolyzed resin. Mass spectrometric analysis of seven sample bombs 

collected from the offgas sampling system showed no detectable CO in any of 

the samples. This is attributable to the amount of excess oxygen, the high 

residence times of combustibles, and the high incineration temperatures. In 

only one instance (see Figure 5) did the pyrolysis product (hydrogen) concen­

tration reach more than a negligible value. Apparently, a large quantity of 

resins was inadvertently introduced into the process at this time, as deduced 

from the high co2 and low oxygen concentrations.· This indicates that feedrate 

control may be important. Pyrolysis products in the form of CxHy were always 

<O. 5%. 

TABLE 2. Retention of Simulated Radionuclides in the Glass Product 

Analytical Basis 
Off gas Filter Glass 

Radionuclide Run Sample System Particulates Product 

Cesium 1 -A 99.29% 99.5% 100% 
I-B 99.8 1% >99. 6% 94% 

Strontium I-A 99.76% 98.4% 100% 
I-B 99.98% >99. 6% 100% 
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CONCLUSIONS AND FUTURE ACTI VITIES 

The feasibility tests with EPICOR II resin vitrification have developed 

some very encouraging data with respect to process operation. These include 

the following: 

• Cs and Sr losses to the effluent stream are low. Cs volatility was 

controlled to 0.71 wt% and less; Sr losses were kept at 0.24 wt% 

and lower. 

• Control of particulate and simulated radionuclide losses to the 

offgas is a function of the submergence depth of the drop tube. 

• Sr and Cs appear to have greater affinity for molten glass than 

carbonaceous particulates, which tends to keep their losses very 

low. 

• No CO was detected in any of the seven sample bombs collected 

throughout the tests. This means the process can operate safely 

without an afterburner and still keep emissions at a low level. 

A number of additional developmental activities are being conducted with 

the resin vitrification process. These activities include longer-term testing 

with nonradioactive resins to determine volume reduction, processing rates, 

scale-up correlations, and material conformance to processing conditions. 

With this information, justification of the process can be determined. 

The merits of the joule-heated ceramic melter (see Figure 6) for resin 

vitrification are being evaluated in the ongoing study. Since the ceramic 

melter operates with a constant glass level (as opposed to the rising-level 

in-can melter), an adjustable drop tube is not required. This difference may 

provide a distinct advantage for remote operation. The ceramic melter may 

also provide improvements in processing rates and product quality. 

Another developmental activity being addressed is the formation of water­

soluble sulfates on the surface of the glass product, which would create 

adverse effects on glass leachability. Sulfanate groups exist in most 

cationic organic resins. Manring et al. {1967) postulate that sulfate 
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FIGURE 6. Joule-Heated Ceramic Melter for Vitrifying EPICOR II Resins 

formation can be controlled in glass-forming processes by controlling the tem­

perature and oxidizing conditions. Present activities address sulfate behav­

ior when EPICOR II resins are vitrified. 
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